Premium
Smoking Alters Inflammation and Skeletal Stem and Progenitor Cell Activity During Fracture Healing in Different Murine Strains
Author(s) -
Hao Zichen,
Li Jun,
Li Bo,
Alder Kareme D,
Cahill Sean V,
Munger Alana M,
Lee Inkyu,
Kwon HyukKwon,
Back JungHo,
Xu Shuogui,
Kang MinJong,
Lee Francis Y
Publication year - 2021
Publication title -
journal of bone and mineral research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.882
H-Index - 241
eISSN - 1523-4681
pISSN - 0884-0431
DOI - 10.1002/jbmr.4175
Subject(s) - bone healing , medicine , nonunion , progenitor cell , inflammation , stem cell , endochondral ossification , pathology , surgery , microbiology and biotechnology , anatomy , biology , cartilage
ABSTRACT Smokers are at a higher risk of delayed union or nonunion after fracture repair. Few specific interventions are available for prevention because the molecular mechanisms that result in these negative sequelae are poorly understood. Murine models that mimic fracture healing in smokers are crucial in further understanding the local cellular and molecular alterations during fracture healing caused by smoking. We exposed three murine strains, C57BL/6J, 129X1/SvJ, and BALB/cJ, to cigarette smoke for 3 months before the induction of a midshaft transverse femoral osteotomy. We evaluated fracture healing 4 weeks after the osteotomy using radiography, micro‐computed tomography (μCT), and biomechanical testing. Radiographic analysis demonstrated a significant decrease in the fracture healing capacity of smoking 129X1/SvJ mice. μCT results showed delayed remodeling of fracture calluses in all three strains after cigarette smoke exposure. Biomechanical testing indicated the most significant impairment in the functional properties of 129X1/SvJ in comparison with C57BL/6J and BALB/cJ mice after cigarette smoke exposure. Thus, the 129X1/SvJ strain is most suitable in simulating smoking‐induced impaired fracture healing. Furthermore, in smoking 129X1/SvJ murine models, we investigated the molecular and cellular alterations in fracture healing caused by cigarette smoking using histology, flow cytometry, and multiplex cytokine/chemokine analysis. Histological analysis showed impaired chondrogenesis in cigarette smoking. In addition, the important reparative cell populations, including skeletal stem cells and their downstream progenitors, demonstrated decreased expansion after injury as a result of cigarette smoking. Moreover, significantly increased pro‐inflammatory mediators and the recruitment of immune cells in fracture hematomas were demonstrated in smoking mice. Collectively, our findings demonstrate the significant cellular and molecular alterations during fracture healing impaired by smoking, including disrupted chondrogenesis, aberrant skeletal stem and progenitor cell activity, and a pronounced initial inflammatory response. © 2020 American Society for Bone and Mineral Research (ASBMR).