z-logo
Premium
Elevated BMP and Mechanical Signaling Through YAP1/RhoA Poises FOP Mesenchymal Progenitors for Osteogenesis
Author(s) -
Stanley Alexandra,
Heo Sujin,
Mauck Robert L,
Mourkioti Foteini,
Shore Eileen M
Publication year - 2019
Publication title -
journal of bone and mineral research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.882
H-Index - 241
eISSN - 1523-4681
pISSN - 0884-0431
DOI - 10.1002/jbmr.3760
Subject(s) - fibrodysplasia ossificans progressiva , endochondral ossification , mesenchymal stem cell , microbiology and biotechnology , rhoa , signal transduction , bone morphogenetic protein , biology , chemistry , anatomy , heterotopic ossification , cartilage , genetics , gene
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease characterized by the formation of extraskeletal bone, or heterotopic ossification (HO), in soft connective tissues such as skeletal muscle. All familial and sporadic cases with a classic clinical presentation of FOP carry a gain‐of‐function mutation (R206H; c.617 G > A) in ACVR1, a cell surface receptor that mediates bone morphogenetic protein (BMP) signaling. The BMP signaling pathway is recognized for its chondro/osteogenic‐induction potential, and HO in FOP patients forms ectopic but qualitatively normal endochondral bone tissue through misdirected cell fate decisions by tissue‐resident mesenchymal stem cells. In addition to biochemical ligand‐receptor signaling, mechanical cues from the physical environment are transduced to activate intracellular signaling, a process known as mechanotransduction, and can influence cell fates. Utilizing an established mesenchymal stem cell model of mouse embryonic fibroblasts (MEFs) from the Acvr1 R206H/+ mouse model that mimics the human disease, we demonstrated that activation of the mechanotransductive effectors Rho/ROCK and YAP1 are increased in Acvr1 R206H/+ cells. We show that on softer substrates, a condition associated with low mechanical signaling, the morphology of Acvr1 R206H/+ cells is similar to the morphology of control Acvr1 +/+ cells on stiffer substrates, a condition that activates mechanotransduction. We further determined that Acvr1 R206H/+ cells are poised for osteogenic differentiation, expressing increased levels of chondro/osteogenic markers compared with Acvr1 +/+ cells. We also identified increased YAP1 nuclear localization in Acvr1 R206H/+ cells, which can be rescued by either BMP inhibition or Rho antagonism. Our results establish RhoA and YAP1 signaling as modulators of mechanotransduction in FOP and suggest that aberrant mechanical signals, combined with and as a result of the increased BMP pathway signaling through mutant ACVR1, lead to misinterpretation of the cellular microenvironment and a heightened sensitivity to mechanical stimuli that promotes commitment of Acvr1 R206H/+ progenitor cells to chondro/osteogenic lineages.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here