z-logo
Premium
Octreotide Is Ineffective in Treating Tumor‐Induced Osteomalacia: Results of a Short‐Term Therapy
Author(s) -
Ovejero Diana,
ElMaouche Diala,
Brillante Beth A,
Khosravi Azar,
Gafni Rachel I,
Collins Michael T
Publication year - 2017
Publication title -
journal of bone and mineral research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.882
H-Index - 241
eISSN - 1523-4681
pISSN - 0884-0431
DOI - 10.1002/jbmr.3162
Subject(s) - octreotide , osteomalacia , hypophosphatemia , medicine , fibroblast growth factor 23 , endocrinology , somatostatin , vitamin d and neurology , parathyroid hormone , calcium
Tumor‐induced osteomalacia (TIO) is a rare paraneoplastic syndrome in which unregulated hypersecretion of fibroblast growth factor 23 (FGF23) by phosphaturic mesenchymal tumors (PMT) causes renal phosphate wasting, hypophosphatemia, and osteomalacia. The resulting mineral homeostasis abnormalities and skeletal manifestations can be reversed with surgical resection of the tumor. Unfortunately, PMTs are often difficult to locate, and medical treatment with oral phosphate and vitamin D analogues is either insufficient to manage the disease or not tolerated. Octreotide has been proposed as a potential treatment for TIO due to the presence of somatostatin receptors (SSTR) on PMTs; however, the role of somatostatin signaling in PMTs and the efficacy of treatment of TIOs with somatostatin analogues is not clear. In an effort to evaluate the efficacy of octreotide therapy in TIO, five subjects with TIO were treated with octreotide for 3 days. Blood intact FGF23, phosphate, and 1,25(OH) 2 D 3 , and tubular reabsorption of phosphate (TRP) were measured at frequent time points during treatment. Octreotide's effects were assessed by comparing group means of the biochemical parameters at each time‐point to mean baseline values. There were no significant changes in blood phosphate, FGF23, 1,25(OH) 2 D 3 , or TRP during octreotide treatment, consistent with a lack of efficacy of octreotide in treating TIO. © 2017 American Society for Bone and Mineral Research.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here