z-logo
Premium
Exendin‐4, a Glucagon‐Like Peptide‐1 Receptor Agonist, Prevents Osteopenia by Promoting Bone Formation and Suppressing Bone Resorption in Aged Ovariectomized Rats
Author(s) -
Ma Xue,
Meng Jingru,
Jia Min,
Bi Long,
Zhou Ying,
Wang Yukun,
Hu Jing,
He Gonghao,
Luo Xiaoxing
Publication year - 2013
Publication title -
journal of bone and mineral research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.882
H-Index - 241
eISSN - 1523-4681
pISSN - 0884-0431
DOI - 10.1002/jbmr.1898
Subject(s) - endocrinology , medicine , bone remodeling , bone resorption , ovariectomized rat , osteoporosis , osteocalcin , osteopenia , osteoprotegerin , rankl , chemistry , deoxypyridinoline , bone mineral , receptor , hormone , activator (genetics) , alkaline phosphatase , biochemistry , enzyme
Osteoporosis mainly affects postmenopausal women and older men. Gastrointestinal hormones released after meal ingestion, such as glucose‐dependent insulinotropic peptide (GIP) and glucagon‐like peptide (GLP)‐2, have been shown to regulate bone turnover. However, whether GLP‐1, another important gastrointestinal hormone, and its analogues also have antiosteoporotic effects, especially in aged postmenopausal situation, has not been confirmed. In the present study, we evaluated the effects of the GLP‐1 receptor agonist exendin‐4 on ovariectomy (OVX)‐induced osteoporosis in old rats. Twelve‐month‐old female Sprague‐Dawley rats were subjected to OVX, and exendin‐4 was administrated 4 weeks after the surgery and lasted for 16 weeks. Bone characters and related serum and gene biomarkers were analyzed. Sixteen weeks of treatment with exendin‐4 slowed down body weight gain by decreasing fat mass and prevented the loss of bone mass in old OVX rats. Exendin‐4 also enhanced bone strength and prevented the deterioration of trabecular microarchitecture. Moreover, exendin‐4 decreased the urinary deoxypyridinoline (DPD)/creatinine ratio and serum C‐terminal cross‐linked telopeptides of type I collagen (CTX‐I) and increased serum alkaline phosphatase (ALP), osteocalcin (OC), and N‐terminal propeptide of type 1 procollagen (P1NP) levels, key biochemical markers of bone turnover. Interestingly, gene expression results further showed that exendin‐4 not only inhibited bone resorption by increasing the osteoprotegerin (OPG)/receptor activator of NF‐κB ligand (RANKL) ratio, but also promoted bone formation by increasing the expression of OC, Col1, Runx2, and ALP, which exhibited dual regulatory effects on bone turnover as compared with previous antiosteoporotic agents. In conclusion, these findings demonstrated for the first time the antiosteoporotic effects of exendin‐4 in old OVX rats and that it might be a potential candidate for treatment of aged postmenopausal osteoporosis.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here