Premium
Vitamin D binding protein is a key determinant of 25‐hydroxyvitamin D levels in infants and toddlers
Author(s) -
Carpenter Thomas O,
Zhang Jane H,
Parra Esteban,
Ellis Bruce K,
Simpson Christine,
Lee William M,
Balko Jody,
Fu Lei,
Wong Betty YL,
Cole David EC
Publication year - 2013
Publication title -
journal of bone and mineral research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.882
H-Index - 241
eISSN - 1523-4681
pISSN - 0884-0431
DOI - 10.1002/jbmr.1735
Subject(s) - vitamin d and neurology , key (lock) , medicine , endocrinology , vitamin d binding protein , chemistry , biology , ecology
Abstract Circulating 25‐hydroxyvitamin D (25‐OHD) levels vary among human populations. Only limited information regarding determinants of these measures is available for infants and children, particularly in minority groups at greatest risk for vitamin D deficiency. We identified demographic determinants of circulating 25‐OHD in a large cohort of minority children, and now extend our studies to examine potential roles of vitamin D binding protein (DBP) as a determinant of 25‐OHD levels. Serum DBP level and common single nucleotide polymorphisms (SNPs) at positions 432 and 436 in the GC gene, encoding DBP, were examined. We confirmed self‐reported ancestry using ancestry informative markers (AIMs), and included quantitative AIMs scores in the analysis. The multivariate model incorporated previously identified demographic and nutritional determinants of 25‐OHD in this cohort, as well as GC SNPs and circulating DBP. Genetic variants in GC differed by self‐reported ancestry. The 1f allele (D432/T436) was enriched in African Americans, occurring in 71%. Homozygosity for the 1f allele (DDTT) occurred in 53% of African Americans but only 6% of Caucasians and 13% of Hispanics. Circulating DBP was significantly correlated with 25‐OHD. GC SNPs were associated with both circulating DBP and 25‐OHD. It appears that progressive substitution of lysine for threonine at the 436 position results in lower circulating 25‐OHD. Multivariate analysis revealed that genetic variance in GC significantly contributes to circulating DBP as well as 25‐OHD. Moreover, the effect of GC SNPs on 25‐OHD are evident after adjusting for their effects on circulating DBP. Thus in young children genetic variance of the common GC T436K SNP affects circulating levels of the DBP protein, which in turn affects circulating 25‐OHD. However, the GC genotype also affects circulating 25‐OHD independently of its effect on circulating DBP. These findings provide data that may be important in the interpretation of vitamin D status in children of varying ancestral backgrounds. © 2013 American Society for Bone and Mineral Research