z-logo
open-access-imgOpen Access
Skeletal Response to Insulin in the Naturally Occurring Type 1 Diabetes Mellitus Mouse Model
Author(s) -
Dixit Manisha,
Liu Zhongbo,
Poudel Sher Bahadur,
Yildirim Gozde,
Zhang Yanjiao Zhang,
Mehta Shilpa,
Murik Omer,
Altarescu Geona,
Kobayashi Yoshifumi,
Shimizu Emi,
Schaffler Mitchell B.,
Yakar Shoshana
Publication year - 2021
Publication title -
jbmr plus
Language(s) - English
Resource type - Journals
ISSN - 2473-4039
DOI - 10.1002/jbm4.10483
Subject(s) - endocrinology , medicine , sclerostin , bone remodeling , bone mineral , type 1 diabetes , osteoblast , diabetes mellitus , insulin , bone resorption , chemistry , nod , osteoporosis , signal transduction , biochemistry , wnt signaling pathway , in vitro
Patients with type 1 diabetes mellitus (T1DM) exhibit reduced BMD and significant increases in fracture risk. Changes in BMD are attributed to blunted osteoblast activity and inhibited bone remodeling, but these cannot fully explain the impaired bone integrity in T1DM. The goal of this study was to determine the cellular mechanisms that contribute to impaired bone morphology and composition in T1DM. Nonobese diabetic (NOD) mice were used, along with μCT, histomorphometry, histology, Raman spectroscopy, and RNAseq analyses of several skeletal sites in response to naturally occurring hyperglycemia and insulin treatment. The bone volume in the axial skeleton was found to be severely reduced in diabetic NOD mice and was not completely resolved with insulin treatment. Decreased bone volume in diabetic mice was associated with increased sclerostin expression in osteocytes and attenuation of bone formation indices without changes in bone resorption. In the face of blunted bone remodeling, decreases in the mineral:matrix ratio were found in cortical bones of diabetic mice by Raman microspectroscopy, suggesting that T1DM did not affect the bone mineralization process per se, but rather resulted in microenvironmental alterations that favored mineral loss. Bone transcriptome analysis indicated metabolic shifts in response to T1DM. Dysregulation of genes involved in fatty acid oxidation, transport, and synthesis was found in diabetic NOD mice. Specifically, pyruvate dehydrogenase kinase isoenzyme 4 and glucose transporter 1 levels were increased, whereas phosphorylated‐AKT levels were significantly reduced in diabetic NOD mice. In conclusion, in addition to the blunted bone formation, osteoblasts and osteocytes undergo metabolic shifts in response to T1DM that may alter the microenvironment and contribute to mineral loss from the bone matrix. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here