z-logo
Premium
Potential use of silkworm gut fiber braids as scaffolds for tendon and ligament tissue engineering
Author(s) -
Pagán Ana,
AznarCervantes Salvador D.,
PérezRigueiro José,
MeseguerOlmo Luis,
Cenis Jose L.
Publication year - 2019
Publication title -
journal of biomedical materials research part b: applied biomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 108
eISSN - 1552-4981
pISSN - 1552-4973
DOI - 10.1002/jbm.b.34300
Subject(s) - tendon , braid , scaffold , biocompatibility , ligament , tissue engineering , biomedical engineering , materials science , mesenchymal stem cell , ultimate tensile strength , adhesion , anatomy , microbiology and biotechnology , medicine , composite material , biology , metallurgy
Tendon and ligament tissue engineering require scaffolds for the treatment of various conditions in the medical field. These must meet requirements such as high tensile strength, biocompatibility, fast and stable repair and a rate of degradation that allows the repair of the damaged tissue. In this work, we propose the use of silkworm gut fiber braids as materials to temporarily replace and repair this type of tissues. The mechanical characterization of the braids made with different number of silk gut fibers is provided, as well as a descriptive analysis of the proliferation and adhesion of cultures of adult human mesenchymal stem cells from bone marrow and fibroblasts (L929) on the braids. As expected, the breaking force increases linearly in the scaffold with the number of fibers, thus being a parameter adaptable to the specific requirements of the tissue to repair and the animal model of study. On the other hand, in all of the cases studied, the values obtained for the elastic modulus of the hydrated fibers were in the range of the ones reported for various human tendons and ligaments. Moreover, the scaffold demonstrated excellent biocompatibility in vitro , allowing the adhesion and proliferation, in the same culture conditions, of the two cell types studied, therefore posing as an ideal candidate to be employed in future in vivo studies that allow elucidating its behavior in the articular environment or extra‐articular tendinous areas. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res B Part B: 2019. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2209–2215, 2019.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here