z-logo
Premium
Metal wear particles in hematopoietic marrow of the axial skeleton in patients with prior revision for mechanical failure of a hip or knee arthroplasty
Author(s) -
Hall Deborah J.,
Pourzal Robin,
Jacobs Joshua J.,
Urban Robert M.
Publication year - 2019
Publication title -
journal of biomedical materials research part b: applied biomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 108
eISSN - 1552-4981
pISSN - 1552-4973
DOI - 10.1002/jbm.b.34285
Subject(s) - bone marrow , iliac crest , materials science , medicine , prosthesis , arthroplasty , rib cage , surgery , anatomy , pathology
Wear particles generated by hip and knee arthroplasties disseminate to the liver and spleen with the highest concentrations observed in subjects who have had a failed arthroplasty. We asked to what extent metallic particles could also disseminate to remote hematopoietic bone marrow. Cored samples of red marrow from the axial skeleton and proximal humerus were obtained postmortem from four males and two females aged 79–92 years. Seven to seventeen years prior to their demise, each subject had undergone successful revision of their arthroplasty for mechanical failure in which an unintended wear condition had generated a large volume of metal particles. The marrow samples were analyzed using stained histological sections and energy dispersive X‐ray analysis. Intracellular metal alloy particles were detected in the bone marrow of the cranium, proximal humerus, sternum, ribs, lumbar vertebrae, and the iliac crest. The components previously revised for mechanical failure were confirmed to be the predominant source of the disseminated wear debris. Particles of either Ti, Ti6Al4V, CoCrMo, FeCrNi alloys, or BaSO 4 were identified in 24 of the 25 marrow samples examined. The particles ranged in size from 50 nm (the limit of resolution of our technique) to 6 μm. Metallic wear particles generated by hip and knee arthroplasties can disseminate widely to hematopoietic bone marrow throughout the axial skeleton and proximal humerus, especially in cases with a history of severe wear. The hematopoietic microenvironment is potentially sensitive to metallic degradation products. However, actual medical sequelae from disseminated wear debris is a rare occurrence. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1930–1936, 2019.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here