Premium
Heart valve tissue‐derived hydrogels: Preparation and characterization of mitral valve chordae, aortic valve, and mitral valve gels
Author(s) -
Wu Jinglei,
Brazile Bryn,
McMahan Sara R.,
Liao Jun,
Hong Yi
Publication year - 2019
Publication title -
journal of biomedical materials research part b: applied biomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 108
eISSN - 1552-4981
pISSN - 1552-4973
DOI - 10.1002/jbm.b.34266
Subject(s) - decellularization , self healing hydrogels , heart valve , extracellular matrix , biomedical engineering , tissue engineering , mitral valve , aortic valve , materials science , cardiology , medicine , microbiology and biotechnology , biology , polymer chemistry
Heart valve (HV) diseases are among the leading causes of death and continue to threaten public health worldwide. The current clinical options for HV replacement include mechanical and biological prostheses. However, an ongoing problem with current HV prostheses is their failure to integrate with the host tissue and their inability grow and remodel within the body. Tissue engineered heart valves (TEHVs) are a promising solution to these problems, as they are able to grow and remodel somatically with the rest of the body. Recently, decellularized HVs have demonstrated great potential as valve replacements because they are tissue specific, but recellularization is still a challenge due to the dense HV extracellular matrix (ECM) network. In this proof‐of‐concept work , we decellularized porcine mitral valve chordae, aortic valve leaflets, and mitral valve leaflets and processed them into injectable hydrogels that could accommodate any geometry. While the three valvular ECMs contained various amounts of collagen, they displayed similar glycosaminoglycan contents. The hydrogels had similar nanofibrous structures and gelation kinetics with various compressive strengths. When encapsulated with NIH 3 T3 fibroblasts, all the hydrogels supported cell survivals up to 7 days. Decellularized HV ECM hydrogels may show promising potential HV tissue engineering applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1732–1740, 2019.