Premium
Modulation of scar tissue formation in injured nervous tissue cultivated on surface‐engineered coralline scaffolds
Author(s) -
Weiss Orly Eva,
Hendler Roni Mina,
Canji Eyal Aviv,
Morad Tzachy,
Foox Maytal,
Francis Yitshak,
Dubinski Zvy,
Merfeld Ido,
Hammer Liat,
Baranes Danny
Publication year - 2018
Publication title -
journal of biomedical materials research part b: applied biomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 108
eISSN - 1552-4981
pISSN - 1552-4973
DOI - 10.1002/jbm.b.34037
Subject(s) - scaffold , materials science , tissue engineering , biomedical engineering , medicine
Following traumatic brain injury, there is no restoration of the lost nervous tissue, mainly due to the formation of a scar. One promising strategy to overcome this hurdle is grafting scaffolds that can disturb the scar blockade, enabling cell invasion into the wound. The aragonite skeleton of corals is useful scaffolds for testing this strategy, being supportive for neural cells in culture. The purpose of this work was to check if a contact between a coralline scaffold and an injured nervous tissue affects scar formation and if this effect can be regulated by engineering the scaffold's surface topology. To address that, hippocampal slices were cultivated on a coral skeleton having two distinct surface shapes: (1) intact skeleton pieces (ISP): porous, microrough surface; (2) grained skeleton (GS): nonporous, macrorough surface. On ISP, slices deformed by engulfing the scaffold's outer surface without penetrating the pores, yet, they preserved their coherence. By contrast, on GS slices were flat, but broken into interconnected small segments of tissue. In addition, whereas on ISP astrocytes were significantly more active and diffusely distributed, on GS reactive astrocytes tightened into a single <90 μm wide scar‐like stripe at the slice's periphery. Hence, by grafting coralline scaffolds of predesigned surface roughness and porosity into brain wounds, control over scar tissue formation can be gained, providing an opportunity for cell migration and damage repair. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2295–2306, 2018.