z-logo
Premium
Mechanical characterization of self‐assembling peptide hydrogels by microindentation
Author(s) -
Hammond Nathan A.,
Kamm Roger D.
Publication year - 2013
Publication title -
journal of biomedical materials research part b: applied biomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 108
eISSN - 1552-4981
pISSN - 1552-4973
DOI - 10.1002/jbm.b.32906
Subject(s) - self healing hydrogels , characterization (materials science) , self assembling peptide , materials science , peptide , self assembly , nanotechnology , composite material , polymer science , polymer chemistry , chemistry , biochemistry
Hydrogels formed from self‐assembling synthetic oligopeptides have been studied for almost 2 decades for use in tissue engineering and drug delivery. Although a great deal has been learned about the microstructure of these materials, there remain questions about how peptide filaments are ordered to form a gel. These unanswered questions leave a disconnect between our understanding of the observed nanoscale mechanical properties of peptide filaments and the macroscale properties of the gels they constitute. This study helps to bridge this gap by examining the role of filament length and interfilament crosslinks in determining bulk mechanical properties. Microindentation was used for mechanical characterization, and microstructure was observed using thin‐section transmission electron microscopy images of gels embedded in resin. Results suggest a gel structure in which filaments are not densely bundled as previously suggested and confirm that crosslinking can be an effective strategy to increase the stiffness of self‐assembling oligopeptide gels. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2013.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here