Premium
Fabrication of polyvinyl alcohol/gelatin nanofiber composites and evaluation of their material properties
Author(s) -
Linh Nguyen Thuy Ba,
Min Young Ki,
Song HoYeon,
Lee ByongTaek
Publication year - 2010
Publication title -
journal of biomedical materials research part b: applied biomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 108
eISSN - 1552-4981
pISSN - 1552-4973
DOI - 10.1002/jbm.b.31701
Subject(s) - polyvinyl alcohol , gelatin , composite material , fabrication , nanofiber , materials science , chemistry , organic chemistry , medicine , alternative medicine , pathology
Electrospinning of polyvinyl alcohol (PVA), gelatin (GE), and a PVA/GE blend was conducted with the aim of fabricating biodegradable scaffolds for tissue engineering. The process parameters including the concentration of GE in PVA/GE blends, electrical field, and tip‐to‐collector distance (TCD) were investigated. Electrospinning processes were conducted at three different GE concentrations (PVA/GE = 2/8, 6/4, and 8/2), and the voltage and TCD were varied from 18 to 24 kV and 7 to 20 cm, respectively. The average diameter of the electrospun PVA, GE, and PVA/GE blend fibers ranged from 50 to 150 nm. The TCD had significant effects on the average diameter of the PVA/GE nanofiber, while changes in the voltage did not significantly affect the diameter of the PVA/GE nanofiber. The miscibility of the PVA/GE blend fibers was examined by differential scanning calorimetry, and X‐ray diffraction was used to determine the crystallinity of the membrane. Tensile strength was measured to evaluate the physical properties of the membrane. Based on the combined results of this study, the PVA/GE membrane holds great promise for use in tissue engineering applications, especially in bone or drug delivery systems. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2010.