z-logo
Premium
NMP‐modified PMMA bone cement with adapted mechanical and hardening properties for the use in cancellous bone augmentation
Author(s) -
Boger Andreas,
Wheeler Kurtis,
Montali Andrea,
Gruskin Elliot
Publication year - 2009
Publication title -
journal of biomedical materials research part b: applied biomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 108
eISSN - 1552-4981
pISSN - 1552-4973
DOI - 10.1002/jbm.b.31345
Subject(s) - materials science , cancellous bone , composite material , cement , bone cement , polymerization , modulus , flexural strength , hardening (computing) , young's modulus , polymer , surgery , medicine , layer (electronics)
The use of polymethylmethacrylate (PMMA) to reinforce vertebral bodies (Vertebroplasty) leads to an increase in the Young's modulus of the augmented vertebral body. Fractures in the adjacent vertebrae may be the consequence thereof. Hence, PMMA with a reduced Young's modulus may be suitable for vertebroplasty. The goal of this study was to produce and characterize stiffness‐adapted PMMA cements. Modified PMMA bone cements were produced by adding N ‐methyl‐pyrrolidone (NMP). Young's modulus, yield strength, polymerization temperature, setting time, and hardening behavior of different cements were analyzed. Focus was on the mechanical properties of the material after different storage conditions (in air at room temperature and in PBS at 37°C). The Young's modulus decreased from 2670 MPa (air)/2384 MPa (PBS) for the regular cement to 76 MPa (air)/320 MPa (PBS) for a material composition with 60% of the MMA substituted by NMP. Yield strength decreased from 85 MPa (air)/78 MPa (PBS) to 2 MPa (air)/24 MPa (PBS) between the regular cement and the 60% composition. Polymerization temperature decreased from 70°C (regular cement) to 48°C for the 30% composition. The hardening behavior exhibited an extension in handling time up to 200% by the modification presented. Modification of PMMA cement using NMP seems to be a promising method to make the PMMA cement more compliant for the use in cancellous bone augmentation in osteoporotic patients: adjustment of its mechanical properties close to those of cancellous bone, lower polymerization temperature, and extended handling time. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 2009

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here