z-logo
Premium
Comparing the behavior of different polypropylene meshes (heavy and lightweight) in an experimental model of ventral hernia repair
Author(s) -
Bellón J. M.,
Rodríguez M.,
GarcíaHonduvilla N.,
GómezGil V.,
Pascual G.,
Buján J.
Publication year - 2009
Publication title -
journal of biomedical materials research part b: applied biomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 108
eISSN - 1552-4981
pISSN - 1552-4973
DOI - 10.1002/jbm.b.31234
Subject(s) - ultimate tensile strength , polygon mesh , materials science , biomaterial , polypropylene , biomedical engineering , elasticity (physics) , abdominal wall , ultimate load , adhesion , surgical mesh , composite material , abdominal hernia , hernia , anatomy , structural engineering , finite element method , surgery , medicine , mathematics , engineering , geometry , nanotechnology
New generation prosthetic biomaterials for abdominal wall repair have been designed to be less dense, by having larger pores than that of the standard polypropylene meshes, to improve abdominal wall compliance. The aim of the present study was to analyze the functional and morphologic properties of these new meshes. For this purpose, 7 × 5 cm 2 defects were created in the anterior abdominal wall of 36 male New Zealand White rabbits and repaired using different polypropylene meshes: a heavyweight mesh (HW), Surgipro, and two lightweight meshes (LW), Parietene and Optilene. Six animals each implanted with biomaterial were sacrificed on postoperative days 14 and 90. Histological and morphometric analysis, adhesion assessment, and biomechanical resistance tests were performed. Similar behavior was shown by the LW and HW meshes in terms of the adhesions and macrophage response induced. After 14 days, the tensile strength of Optilene was greater than the strengths recorded for the other two biomaterials, probably because of its high elasticity. By 90 days, however, the tensile strengths of the three biomaterials were comparable. In conclusion, despite an initial tensile strength advantage shown by the mesh with larger pores, at 90 days postimplant, tensile strengths were similar. Compared with HW, LW prostheses have the benefit that less foreign material was implanted, preserving the elasticity of the recipient host tissue. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2009

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here