z-logo
Premium
Multiaxial analysis of dental composite materials
Author(s) -
Kotche Miiri,
Drummond James L.,
Sun Kang,
Vural Murat,
DeCarlo Francesco
Publication year - 2009
Publication title -
journal of biomedical materials research part b: applied biomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 108
eISSN - 1552-4981
pISSN - 1552-4973
DOI - 10.1002/jbm.b.31111
Subject(s) - materials science , composite material , composite number , dental composite , strain gauge , stress (linguistics) , philosophy , linguistics
Dental composites are subjected to extreme chemical and mechanical conditions in the oral environment, contributing to the degradation and ultimate failure of the material in vivo . The objective of this study is to validate an alternative method of mechanically loading dental composite materials. Confined compression testing more closely represents the complex loading that dental restorations experience in the oral cavity. Dental composites, a nanofilled and a hybrid microfilled, were prepared as cylindrical specimens, light‐cured in ring molds of 6061 aluminum, with the ends polished to ensure parallel surfaces. The samples were subjected to confined compression loading to 3, 6, 9, 12, and 15% axial strain. Upon loading, the ring constrains radial expansion of the specimen, generating confinement stresses. A strain gage placed on the outer wall of the aluminum confining ring records hoop strain. Assuming plane stress conditions, the confining stress (σ c ) can be calculated at the sample/ring interface. Following mechanical loading, tomographic data was generated using a high‐resolution microtomography system developed at beamline 2‐BM of the Advanced Photon Source at Argonne National Laboratory. Extraction of the crack and void surfaces present in the material bulk is numerically represented as crack edge/volume (CE/V), and calculated as a fraction of total specimen volume. Initial results indicate that as the strain level increases the CE/V increases. Analysis of the composite specimens under different mechanical loads suggests that microtomography is a useful tool for three‐dimensional evaluation of dental composite fracture surfaces. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2009

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here