z-logo
Premium
Porous hybrid structures based on P(DLLA‐ co ‐TMC) and collagen for tissue engineering of small‐diameter blood vessels
Author(s) -
Buttafoco Laura,
Boks Niels P.,
EngbersBuijtenhuijs Paula,
Grijpma Dirk W.,
Poot Andre A.,
Dijkstra Piet J.,
Vermes Istvan,
Feijen Jan
Publication year - 2006
Publication title -
journal of biomedical materials research part b: applied biomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 108
eISSN - 1552-4981
pISSN - 1552-4973
DOI - 10.1002/jbm.b.30557
Subject(s) - porosity , materials science , tissue engineering , biomedical engineering , composite material , engineering
Poly ( D , L ‐lactide)‐ 7co ‐(1,3‐trimethylene carbonate) [P(DLLA‐ co ‐TMC)] (83 mol % DLLA) was used to produce matrices suitable for tissue engineering of small‐diameter blood vessels. The copolymer was processed into tubular structures with a porosity of ∼98% by melt spinning and fiber winding, thus obviating the need of organic solvents that may compromise subsequent cell culture. Unexpectedly, incubation in culture medium at 37°C resulted in disconnection of the contact points between the polymer fibers. To improve the structural stability of these P(DLLA‐ co ‐TMC) scaffolds, a collagen microsponge was formed inside the pores of the synthetic matrix by dip coating and freeze drying. Hybrid structures with a porosity of 97% and an average pore size of 102 μm were obtained. Structural stability was preserved during incubation in culture medium at 37°C. Smooth‐muscle cells (SMCs) were seeded in these hybrid scaffolds and cultured under pulsatile flow conditions in a bioreactor (120 beats/min, 80–120 mmHg). After 7 days of culture in a dynamic environment viable SMCs were homogeneously distributed throughout the constructs, which were five times stronger and stiffer than noncultured scaffolds. Values for yield stress (2.8 ± 0.6 MPa), stiffness (1.6 ± 0.4 MPa), and yield strain (120% ± 20%) were comparable to those of the human artery mesenterica. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2006

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom