z-logo
Premium
The internalized CdSe/ZnS quantum dots impair the chondrogenesis of bone marrow mesenchymal stem cells
Author(s) -
Hsieh ShuChen,
Wang FungFang,
Hung ShihChieh,
Chen YuJu,
Wang YngJiin
Publication year - 2006
Publication title -
journal of biomedical materials research part b: applied biomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 108
eISSN - 1552-4981
pISSN - 1552-4973
DOI - 10.1002/jbm.b.30517
Subject(s) - chondrogenesis , mesenchymal stem cell , microbiology and biotechnology , aggrecan , stem cell , bone marrow , cell , chemistry , materials science , biophysics , biology , immunology , pathology , medicine , biochemistry , osteoarthritis , articular cartilage , alternative medicine
Mesenchymal stem cells (MSCs) are capable of differentiating into multiple cell lineages and are useful for therapeutic applications. Labeling the MSCs with fluorescent probes is beneficial in tracing the fate of MSCs after implantation. We have introduced the CdSe/ZnS quantum dots (QDs) into the human bone marrow MSCs and examined the effects of QDs on the proliferation and chondrogenesis of the cells. The internalized QDs were found localized in perinuclear regions and remained there after a number of cell passages. The presence of QDs did not affect the proliferation of cells or the size of chondrospheres formed, when subjected to chondrogenesis induction. However, the expression of mRNA and protein of type II collagen and aggrecan in the chondrospheres was significantly inhibited in cells labeled with QDs, suggesting impaired chondrogenesis. Our results that the presence of QDs interferes with the chondrogenic differentiation of MSCs raise concerns in using the QDs as fluorescence tracers for stem cells. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2006

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here