z-logo
Premium
Chondroconductive potential of tantalum trabecular metal
Author(s) -
Gordon Wanda J.,
Conzemius Michael G.,
Birdsall Elizabeth,
Wannemuehler Yvonne,
Mallapragada Surya,
Lewallen David G.,
Yaszemski Michael J.,
O'Driscoll Shawn W. D.
Publication year - 2005
Publication title -
journal of biomedical materials research part b: applied biomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 108
eISSN - 1552-4981
pISSN - 1552-4973
DOI - 10.1002/jbm.b.30242
Subject(s) - cartilage , mesenchymal stem cell , biomedical engineering , glycosaminoglycan , matrix (chemical analysis) , tantalum , materials science , anatomy , chemistry , pathology , medicine , composite material , metallurgy
Abstract Mesenchymal stem cells or chondrocytes have been implanted into joints in biodegradable matrices in order to improve the quality of healing cartilage defects; however, insufficient biomechanical strength of the construct at implantation is a limiting factor for clinical application. Logically, a construct with better biomechanical characteristics would provide better results. Tantalum trabecular metal (TTM) is osteoconductive and mechanically similar to subchondral bone. The objective of this pilot study was to determine if TTM is also chondroconductive. Small sections of TTM were cultured with emu and canine chondrocytes in static and dynamic culture environments. The sections cultured in dynamic bioreactors were diffusely covered with a cartilaginous matrix. Sections cultured in static conditions had no growth. Histologic evaluation from emu and canine dynamic cultures showed tissue that was heavily populated with mesenchymal cells that resembled chondrocytes, and glycosaminoglycan staining that was distributed throughout the matrix. Type II collagen content in the canine dynamic culture was 84% by SDS‐PAGE. Tantalum trabecular metal is chondroconductive in vitro in a dynamic environment when cultured with adult canine or emu chondrocytes. This technology could be expanded to determine if cartilaginous–metallic constructs may be used for joint resurfacing of osteoarthritic joints. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2005

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here