Premium
Immunomodulatory property and its regulatory mechanism of double network hydrogel on dendritic cells
Author(s) -
Zhu Fujun,
Tong Yalin,
Wu Yao,
Dong Ning,
Sheng Zhiyong,
Yao Yongming
Publication year - 2021
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.37091
Subject(s) - microbiology and biotechnology , in vivo , self healing hydrogels , in vitro , materials science , regeneration (biology) , immune system , dendritic cell , chemistry , biology , immunology , biochemistry , polymer chemistry
Modulation of the key immune cell subsets by biomaterial has emerged as a potential target to promote tissue repair and regeneration. Based on calcium alginate (Alg) and glycol chitosan (GC), an injectable double‐network (DN) hydrogel has been developed as a scaffold for cell delivery and cell cocultured system. Previous studies have documented the interaction between dendritic cells (DCs) and GC or Alg hydrogel, but the potential effect of DN hydrogel on activation of DCs still remains unclear. This research was conducted to explore the immunomodulatory influence and underlying mechanisms of GC/Alg DN hydrogel on DCs in vitro and in vivo. Stimulation of DCs with DN hydrogel obviously induced the maturation of DCs in vitro. In vivo, DN hydrogel did not have obvious influence on the maturation of splenic DCs on postimplantation days 3, 10, and 30. Mechanistically, we found that DN hydrogel induced the maturation of DCs via phosphorylation of phosphatidylinositol 3‐kinase/protein kinase B/mammalian target of rapamycin in vitro. It provides a novel understanding of the immunomodulatory property of DN hydrogel on DCs, which may serve as potential target for designing immune‐mediated regenerative strategies.