Premium
Fabrication of carbonate apatite honeycomb and its tissue response
Author(s) -
Ishikawa Kunio,
Munar Melvin L.,
Tsuru Kanji,
Miyamoto Youji
Publication year - 2019
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.36640
Subject(s) - materials science , apatite , bone tissue , compressive strength , porosity , honeycomb , biomedical engineering , composite material , mineralogy , chemistry , medicine
Carbonate apatite (CO 3 Ap) block can be used as a bone substitute because it can be remodeled to new natural bone in a manner conforming with the bone remodeling process. Among the many porous structures available, honeycomb (HC) structure is advantageous for rapid replacement of CO 3 Ap to bone. In this study, the feasibility to fabricate a CO 3 Ap HC was studied, along with its initial tissue response in rabbit femur bone defect. First, a mixture of Ca(OH) 2 and a wax‐based binder was extruded from a HC mold. Then the fabricated HC was heated for binder removal and carbonation at 450°C in a mixed O 2 –CO 2 atmosphere, forming a CaCO 3 HC. When the CaCO 3 HC was immersed in 1 mol/L Na 3 PO 4 solution at 80°C for 7 days, its composition changed from CaCO 3 to CO 3 Ap, maintaining the structure of the original CaCO 3 HC. Compressive strengths of the CaCO 3 and CO 3 Ap HCs were 65.2 ± 7.4 MPa and 88.7 ± 4.7 MPa, respectively. When the rabbit femur bone defect was reconstructed with the CO 3 Ap HC, new bone penetrated the CO 3 Ap HC completely. Osteoclasts and osteoblasts were found on the surface of the newly formed bone and osteocytes were also found in the newly formed bone, indicating ongoing bone remodeling. Furthermore, blood vessels were formed inside the pores of CO 3 Ap HC. Therefore, CO 3 Ap HC has good potential as an ideal bone substitute. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1014–1020, 2019.