z-logo
Premium
Combinational drug delivery using nanocarriers for breast cancer treatments: A review
Author(s) -
Olov Nafise,
BagheriKhoulenjani Shadab,
Mirzadeh Hamid
Publication year - 2018
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.36410
Subject(s) - nanocarriers , drug delivery , materials science , nanotechnology , breast cancer , liposome , targeted drug delivery , cancer , pharmacology , medicine
Breast cancer (BC) is the most common cancer in women that requires special attention due to low response to conventional treatments. The common method for treating cancer (especially BC) is applying a single anticancer agent, however, due to some disadvantages including cytotoxicity, side effects, and multidrug resistance, the efficiency and application of this method are limited. To overcome these challenges, the combinational delivery of anticancer drugs (including chemical agents, genetic materials, etc.) has been introduced. To increase the efficacy of this new method, several nanocarriers including inorganic nanoparticles (such as, magnetic nanoparticles, silica nanoparticles, etc.) and organic ones (e.g., dendrimers, liposomes, micelles, and polymeric nanoparticles) have been used. Based on the literature, combinational delivery using nanocarriers showed promising results in the treatment of BC. In this review, combination regimens for the treatment of BC, nanocarriers containing combinations of pharmaceutical agents (including small molecule chemotherapeutic, biological, and gene therapy agents) as an opportunity to overcome chemotherapy challenges and, finally, examples of these formulations have been presented. This review aims to provide a better understanding of these increasingly important new methods of cancer treatment and the main issues and key considerations for a rational design of nanocarriers used in combinational delivery of different synergistic anticancer agents. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2272‐2283, 2018.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here