z-logo
Premium
In vitro basic fibroblast growth factor (bFGF) delivery using an antithrombogenic 2‐methacryloyloxyethyl phosphorylcholine (MPC) polymer coated with a micropatterned diamond‐like carbon (DLC) film
Author(s) -
Bito Kenta,
Hasebe Terumitsu,
Maegawa Shunto,
Maeda Tomoki,
Matsumoto Tomohiro,
Suzuki Tetsuya,
Hotta Atsushi
Publication year - 2017
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.36201
Subject(s) - materials science , basic fibroblast growth factor , polymer , phosphorylcholine , diamond like carbon , drug delivery , biomedical engineering , nanotechnology , composite material , growth factor , thin film , chemistry , biochemistry , medicine , receptor
In this study, a newly designed drug‐release platform composed of an antithrombogenic 2‐methacryloyloxyethyl phosphorylcholine (MPC) polymer was introduced, which was impregnated with basic fibroblast growth factor (bFGF) (bFGF/MPC polymer) to enhance the endothelial cell activation. The platform was also coated with an ultrathin micropatterned diamond‐like carbon (DLC) film (DLC/bFGF/MPC polymer) to precisely control the drug release rate and the cell compatibility. The resulting DLC/bFGF/MPC polymer could effectively prolong the bFGF release rate by depositing the micropatterned DLC. The number of adherent platelets on the DLC/bFGF/MPC polymer was significantly lower (about 1/14) than that on a currently used stent made of stainless steel (SUS316L), indicating the enhanced antithrombogenicity in the DLC/bFGF/MPC polymer. The proliferation of endothelial cells on the DLC/bFGF/MPC polymer and the DLC/MPC polymer (without bFGF) were also examined. It was found that the optical density of HUVEC on the DLC/bFGF/MPC polymer determined by WST‐8 assay was higher by 25%than that on the DLC/MPC polymer (without bFGF) measured after 72 h of incubation. Our results suggest that the released bFGF that contributes to the expression of other growth factors results in the early proliferation of the HUVEC on the DLC/bFGF/MPC polymer. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3384–3391, 2017.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom