Premium
Photocrosslinkable and elastomeric hydrogels for bone regeneration
Author(s) -
Thakur Teena,
Xavier Janet R.,
Cross Lauren,
Jaiswal Manish K.,
Mondragon Eli,
Kaunas Roland,
Gaharwar Akhilesh K.
Publication year - 2016
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.35621
Subject(s) - materials science , nanocomposite , elastomer , self healing hydrogels , gelatin , regeneration (biology) , biomedical engineering , tissue engineering , composite material , polymer chemistry , chemistry , organic chemistry , medicine , biology , microbiology and biotechnology
Nanocomposite biomaterials are extensively investigated for cell and tissue engineering applications due their unique physical, chemical and biological characteristics. Here, we investigated the mechanical, rheological, and degradation properties of photocrosslinkable and elastomeric nanocomposite hydrogels from nanohydroxyapatite (nHAp) and gelatin methacryloyl (GelMA). The addition of nHAp resulted in a significant increase in mechanical stiffness and physiological stability. Cells readily adhere and proliferate on the nanocomposite surfaces. Cyclic stretching of cells on the elastomeric nanocomposites revealed that nHAp elicited a stronger alignment response in the direction of strain. In vitro studies highlight enhanced bioactivity of nanocomposites as determined by alkaline phosphate (ALP) activity. Overall, the elastomeric and photocrosslinkable nanocomposite hydrogels can be used for minimally invasive therapy for bone regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 879–888, 2016.