Premium
Fabrication of interconnected porous calcite by bridging calcite granules with dicalcium phosphate dihydrate and their histological evaluation
Author(s) -
Ishikawa Kunio,
Koga Noriko,
Tsuru Kanji,
Takahashi Ichiro
Publication year - 2016
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.35604
Subject(s) - calcite , materials science , calcium carbonate , porosity , apatite , mineralogy , chemical engineering , composite material , geology , engineering
Interconnected porous calcite has attracted attention as an artificial bone replacement material and as a precursor for the fabrication of carbonate apatite, which is also an artificial bone replacement material. In this study, calcite granules were exposed to acidic calcium phosphate solution, and the feasibility of fabricating interconnected porous calcite using this process was evaluated. No setting reaction was observed under the nonloading condition. In contrast, under loading conditions, calcite granules were bridged with dicalcium phosphate dihydrate crystals, and the calcite granules set into interconnected porous calcite foam. When applied 0.4 MPa of loading pressure during sample preparation, compressive strength of the obtained interconnected porous calcite was ∼1.5 MPa. The exposure of the calcite granules to acidic calcium phosphate solution under loading conditions was the key for the setting reaction to occur. This is because calcite granules cannot contact one another under the nonloading condition because of bubble formation on the surfaces of the calcite granules. The interconnected porous calcite revealed excellent tissue response, and new bone was able to penetrate into the porous calcite 2 weeks after implantation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A 104A: 652–658, 2016.