z-logo
Premium
Recombinant TAT–gelonin fusion toxin: Synthesis and characterization of heparin/protamine‐regulated cell transduction
Author(s) -
Shin Meong Cheol,
Zhao Jingwen,
Zhang Jian,
Huang Yongzhuo,
He Huining,
Wang Mei,
Min Kyoung Ah,
Yang Victor C.
Publication year - 2015
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.35188
Subject(s) - protamine , materials science , recombinant dna , transduction (biophysics) , heparin , protamine sulfate , fusion protein , microbiology and biotechnology , biochemistry , biology , gene
Abstract Protein toxins, such as gelonin, are highly desirable anti‐cancer drug candidates due to their unparalleled potency and repetitive reaction mechanism in inhibiting protein translation. However, for its potential application in cancer therapy, there remains the cell membrane barrier that allows permeation of only small molecules, which must be overcome. To address this challenge, we conjugated gelonin with a protein transduction domain (PTD), the TAT peptide, via genetic recombination. The chimeric TAT–gelonin fusion protein (TAT‐Gel) retained equipotent N ‐glycosidase activity yet displayed greater cell uptake than unmodified recombinant gelonin (rGel), thereby yielding a significantly augmented cytotoxic activity. Remarkably, TAT‐Gel displayed up to 177‐fold lower IC 50 (avg. 54.3 n M ) than rGel (avg. IC 50 : 3640 n M ) in tested cell lines. This enhanced cytotoxicity, however, also raised potential toxicity concerns due to the non‐selectivity of PTD in its mediated cell transduction. To solve this problem, we investigated the plausibility of regulating the cell transduction of TAT‐Gel via a reversible masking using heparin and protamine. Here, we demonstrated, both in vitro and in vivo , that the cell transduction of TAT‐Gel can be completely curbed with heparin and yet this heparin block can be efficiently reversed by the addition of protamine. This reversible tight regulation of the cell transduction of TAT‐Gel by heparin and protamine sheds light of possible application of TAT‐Gel in achieving a highly effective yet safe drug therapy for the treatment of tumors. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 409–419, 2015.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here