z-logo
Premium
Toll‐like receptors‐2 and 4 are overexpressed in an experimental model of particle‐induced osteolysis
Author(s) -
Valladares Roberto D.,
Nich Christophe,
Zwingenberger Stefan,
Li Chenguang,
Swank Katherine R.,
Gibon Emmanuel,
Rao Allison J.,
Yao Zhenyu,
Goodman Stuart B.
Publication year - 2014
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.34972
Subject(s) - osteolysis , innate immune system , osteoclast , receptor , rankl , osteoimmunology , tlr2 , immune system , toll like receptor , cancer research , materials science , immunology , microbiology and biotechnology , medicine , biology , dentistry , activator (genetics)
Aseptic loosening secondary to particle‐associated periprosthetic osteolysis remains a major cause of failure of total joint replacements (TJR) in the mid‐ and long term. As sentinels of the innate immune system, macrophages are central to the recognition and initiation of the inflammatory cascade, which results in the activation of bone resorbing osteoclasts. Toll‐like receptors (TLRs) are involved in the recognition of pathogen‐associated molecular patterns and danger‐associated molecular patterns. Experimentally, polymethylmethacrylate and polyethylene (PE) particles have been shown to activate macrophages via the TLR pathway. The specific TLRs involved in PE particle‐induced osteolysis remain largely unknown. We hypothesized that TLR‐2, ‐4, and ‐9 mediated responses play a critical role in the development of PE wear particle‐induced osteolysis in the murine calvarium model. To test this hypothesis, we first demonstrated that PE particles caused observable osteolysis, visible by microCT and bone histomorphometry when the particles were applied to the calvarium of C57BL/6 mice. The number of TRAP positive osteoclasts was significantly greater in the PE‐treated group when compared to the control group without particles. Finally, using immunohistochemistry, TLR‐2 and TLR‐4 were highly expressed in PE particle‐induced osteolytic lesions, whereas TLR‐9 was downregulated. TLR‐2 and ‐4 may represent novel therapeutic targets for prevention of wear particle‐induced osteolysis and accompanying TJR failure. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 3004–3011, 2014.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here