Premium
Two‐stage implantation of the skin‐ and bone‐integrated pylon seeded with autologous fibroblasts induced into osteoblast differentiation for direct skeletal attachment of limb prostheses
Author(s) -
Shevtsov Maxim A.,
Galibin Oleg V.,
Yudintceva Nataliya M.,
Blinova Miralda I.,
Pinaev George P.,
Ivanova Anna A.,
Savchenko Olga N.,
Suslov Dmitriy N.,
Potokin Igor L.,
Pitkin Emil,
Raykhtsaum Grigory,
Pitkin Mark R.
Publication year - 2014
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.34969
Subject(s) - periprosthetic , implant , intramedullary rod , biomedical engineering , materials science , osteoblast , biocompatibility , in vivo , histology , mesenchymal stem cell , titanium , medicine , surgery , pathology , in vitro , biology , arthroplasty , biochemistry , microbiology and biotechnology , metallurgy
Angio‐ and osteogenesis following the two‐stage (TS) implantation of the skin‐ and bone‐integrated pylon seeded with autologous fibroblasts was evaluated. Two consecutive animal substudies were undertaken: intramedullary subcutaneous implantation (15 rabbits) and a TS transcutaneous implantation (12 rabbits). We observed enhanced osseointegrative properties of the intramedullary porous component seeded with fibroblasts induced into osteoblast differentiation, as compared to the untreated porous titanium pylon. The three‐phase scintigraphy and subsequent histological analysis showed that the level of osteogenesis was 1.5‐fold higher than in the control group, and significantly so ( p < 0.05). The biocompatibility was further proved by the absence of inflammatory response or encapsulation and sequestration on the histology assay. Treatment of the transcutaneous component with autologous fibroblasts was associated with nearly a 2‐fold decrease in the period required for the ingrowth of dermal and subdermal soft tissues into the implant surface, as compared to the untreated porous titanium component. Direct dermal attachment to the transcutaneous implant prevented superficial and deep periprosthetic infections in rabbits in vivo . © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 3033–3048, 2014.