Premium
Infrared spectroscopic characterization of carbonated apatite: A combined experimental and computational study
Author(s) -
Ren Fuzeng,
Ding Yonghui,
Leng Yang
Publication year - 2014
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.34720
Subject(s) - apatite , carbonate , materials science , infrared spectroscopy , calcite , adsorption , infrared , mineralogy , hydrothermal circulation , analytical chemistry (journal) , chemical engineering , chemistry , organic chemistry , optics , physics , metallurgy , engineering
A combined experimental and computational approach was employed to investigate the feasibility and effectiveness of characterizing carbonated apatite (CAp) by infrared (IR) spectroscopy. First, an experimental comparative study was conducted to identify characteristic IR vibrational bands of carbonate substitution in the apatite lattice. The IR spectra of pure hydroxyapatite (HA), carbonate adsorbed on the HA surface, a physical mixture of HA and sodium carbonate monohydrate, a physical mixture of HA and calcite, synthetic CAps prepared using three methods (precipitation method, hydrothermal route, and solid‐gas reaction at high temperature) and biological apatites (human enamel, human cortical bone, and two animal bones) were compared. Then, the IR vibrational bands of carbonate in CAp were calculated with density functional theory. The experimental study identified characteristic IR bands of carbonate that cannot be generated from surface adsorption or physical mixtures and the results show that the bands at ∼880, 1413, and 1450 cm −1 should not be used as characteristic bands of CAp since they could result from carbonate adsorbed on the apatite crystals surface or present as a separate phase. The combined experimental and computational study reveals that the carbonate v 3 bands at ∼1546 and 1465 cm −1 are, respectively, the IR signature bands for type A CAp and type B CAp. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 496–505, 2014.