z-logo
Premium
Neural responses to electrical stimulation on patterned silk films
Author(s) -
HronikTupaj Marie,
Raja Waseem Khan,
TangSchomer Min,
Omenetto Fiorenzo G.,
Kaplan David L.
Publication year - 2013
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.34565
Subject(s) - axon , materials science , stimulation , silk , biomedical engineering , nanotechnology , neuroscience , composite material , biology , medicine
Peripheral nerve injury is a critical issue for patients with trauma. Following injury, incomplete axon regeneration or misguided axon innervation into tissue will result in loss of sensory and motor functions. The objective of this study was to examine axon outgrowth and axon alignment in response to surface patterning and electrical stimulation. To accomplish our objective, metal electrodes with dimensions of 1.5 mm × 4 cm, were sputter coated onto micropatterned silk protein films, with surface grooves 3.5 μm wide × 500 nm deep. P19 neurons were seeded on the patterned electronic silk films and stimulated at 120 mV, 1 kHz, for 45 min each day for 7 days. Responses were compared with neurons on flat electronic silk films, patterned silk films without stimulation, and flat silk films without stimulation. Significant alignment was found on the patterned film groups compared with the flat film groups. Axon outgrowth was greater ( p < 0.05) on electronic films on days 5 and 7 compared with the unstimulated groups. In conclusion, electrical stimulation, at 120 mV, 1 kHz, for 45 min daily, in addition to surface patterning, of 3.5 μm wide × 500 nm deep grooves, offered control of nerve axon outgrowth and alignment. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A: 2559–2572, 2013.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here