z-logo
Premium
In vitro mineralization and bone osteogenesis in poly(ε‐caprolactone)/gelatin nanofibers
Author(s) -
Alvarez Perez Marco A.,
Guarino Vincenzo,
Cirillo Valentina,
Ambrosio Luigi
Publication year - 2012
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.34233
Subject(s) - bone sialoprotein , gelatin , osteopontin , nanofiber , materials science , osteocalcin , biomedical engineering , mesenchymal stem cell , alkaline phosphatase , extracellular matrix , microbiology and biotechnology , osteoid , polycaprolactone , caprolactone , chemistry , anatomy , nanotechnology , biochemistry , biology , immunology , medicine , composite material , enzyme , polymer , copolymer
The implementation of bio‐inspired strategies in developing scaffolds for the reconstruction of oral, craniofacial and bone skeletal tissues after injury or resection remains a challenge. Currently, advanced scaffolds comprising nanofibers endowed with biochemical/biophysical signaling capability offer great advantages in bone regeneration, because of their faithful mimesis of the characteristic size scales encountered in the fibrous network of the native extracellular matrix (ECM). In this study, we investigate the biological potential of nanofibers made of polycaprolactone and gelatin on guiding the regenerative mechanisms of bone. Contact angle measurements and environmental SEM investigations indicate a weak linkage of gelatin molecules to PCL chains, facilitating an efficient adhesion signal to cells up to 3 days of culture . In vitro studies performed on human mesenchymal stem cells (hMSC) until 3 weeks in culture medium with osteogenic supplementation, clearly showing the effectiveness of PCL/Gelatin electrospun scaffolds in promoting bone osteogenesis and mineralization. The increase of alkaline phosphatase activity (ALP) and gene expression of bone‐related molecules (bone sialoprotein, osteopontin and osteocalcin), indicated by immunodetection and upregulation level of mRNA, confirm that proposed nanofibers promote the osteogenic differentiation of hMSC, preferentially in osteogenic medium. Moreover, the evidence of newly formed collagen fibers synthesis by SIRCOL and their mineralization evaluated by Alizarin Red staining and EDS mapping of the elements Ca, P and Mg corroborate the idea that native osteoid matrix is ultimately deposited. All these data suggest that PCL and gelatin electrospun nanofibers have great potential as osteogenesis promoting scaffolds for successful application in bone surgery. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 100A:3008–3019, 2012.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here