Premium
Biomechanical characterization of aortic valve tissue in humans and common animal models
Author(s) -
Martin Caitlin,
Sun Wei
Publication year - 2012
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.34099
Subject(s) - aortic valve , elastin , heart valve , animal model , biomedical engineering , cardiology , medicine , pathology
Aortic valve disease develops in an escalating fashion in elderly patients. Current treatments including total valve replacement and valve repair techniques are still suboptimal. A thorough understanding of the animal and human valve tissue properties, particularly their differences, is crucial for the establishment of preclinical animal models and strategies for evaluating new valve treatment techniques, such as transcatheter valve intervention and tissue engineered valves. The goal of this study was to characterize and compare the biomechanical properties and histological structure of healthy ovine, porcine, and human aortic valve leaflets. The biaxial mechanical properties of the aortic valve leaflets of 10 ovine (∼1 year), 10 porcine (6–9 months), and 10 aged human (80.6 ± 8.34) hearts were quantified. Tissue microstructure was analyzed via histological techniques. Aged human aortic valve leaflets were significantly less compliant than both ovine and porcine leaflets, with the ovine leaflets being the most compliant. Histological analysis revealed structural differences between the species: the human and porcine leaflets contained more collagen and elastin than the ovine leaflets. Significant mechanical and structural differences in the aortic valve tissues of 6‐ to 9‐month‐old porcine models and 1‐year‐old ovine models with respect to those of aged humans, suggest that these animal models may not be representative of the typical patient undergoing aortic valve replacement. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.