z-logo
Premium
Gradual pore formation in natural origin scaffolds throughout subcutaneous implantation
Author(s) -
Martins Ana M.,
Kretlow James D.,
CostaPinto Ana R.,
Malafaya Patrícia B.,
Fernandes Emanuel M.,
Neves Nuno M.,
Alves Catarina M.,
Mikos Antonios G.,
Kasper F. Kurtis,
Reis Rui L.
Publication year - 2012
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.33261
Subject(s) - materials science , biomedical engineering , natural (archaeology) , composite material , nanotechnology , medicine , archaeology , history
This study used a rat subcutaneous implantation model to investigate gradual in situ pore formation in a self‐regulating degradable chitosan‐based material, which comprises lysozyme incorporated into biomimetic calcium phosphate (CaP) coatings at the surface to control the scaffold degradation and subsequent pore formation. Specifically, the in vivo degradation of the scaffolds, the in situ pore formation, and the tissue response were investigated. Chitosan or chitosan/starch scaffolds were studied with and without a CaP coating in the presence or absence of lysozyme for a total of six experimental groups. Twenty‐four scaffolds per group were implanted, and eight scaffolds were retrieved at each of three time points (3, 6, and 12 weeks). Harvested samples were analyzed for weight loss, microcomputed tomography, and histological analysis. All scaffolds showed pronounced weight loss and pore formation as a function of time. The highest weight loss was 29.8% ± 1.5%, obtained at week 12 for CaP chitosan/starch scaffolds with lysozyme incorporated. Moreover, all experimental groups showed a significant increase in porosity after 12 weeks. At all time points no adverse tissue reaction was observed, and as degradation increased, histological analysis showed cellular ingrowth throughout the implants. Using this innovative methodology, the ability to gradually generate pores in situ was clearly demonstrated in vivo . © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here