z-logo
Premium
Design of three‐dimensional biomimetic scaffolds
Author(s) -
Owen Shawn C.,
Shoichet Molly S.
Publication year - 2010
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.32834
Subject(s) - extracellular matrix , tissue engineering , materials science , cell adhesion , nanotechnology , function (biology) , scaffold , cell function , biomimetics , adhesion , matrix (chemical analysis) , regenerative medicine , biological system , computer science , cell , biomedical engineering , microbiology and biotechnology , stem cell , biology , engineering , genetics , composite material
Abstract A detailed understanding of the biophysical features that affect cell growth and development is important in guiding the design of biomimetic scaffolds. The cellular microenvironment is a network of structural and functional components that provide mechanical and chemical stimuli, which influence cell function and fate. Important developmental signals are conveyed to cells through interactions with neighboring cells, the extracellular matrix (ECM), and growth factors. Currently, there are number of approaches to create 3D tissue models in vitro that allow for control over cell adhesion, the physical properties of the surrogate matrix, and the spatial distribution of growth factors. This review describes some of the most significant biological features of the ECM, and several engineering methods currently being implemented to design and tune synthetic scaffolds to mimic these features. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here