z-logo
Premium
Characterization of formulation parameters affecting low molecular weight drug release from in situ forming drug delivery systems
Author(s) -
Patel Ravi B.,
Carlson Angela N.,
Solorio Luis,
Exner Agata A.
Publication year - 2010
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.32724
Subject(s) - plga , materials science , solubility , drug delivery , excipient , drug , controlled release , pharmacology , chromatography , nanotechnology , chemistry , organic chemistry , medicine , nanoparticle
In situ forming implants (ISFI) have shown promise in delivering adjuvant chemotherapy following minimally invasive cancer therapies such as thermal ablation of tumors. Although ISFI systems have been thoroughly investigated for delivery of high molecular weight (Mw) therapeutics, little research has been conducted to optimize their design for delivery of low Mw drugs. This study examined the effect of varying the formulation components on the low Mw drug release profile from a ISFI consisting of poly( D,L ‐lactide‐co‐glycolide) (PLGA), fluorescein (model drug), and excipient dissolved in 1‐methyl‐2‐pyrrolidinone (NMP). Effects of varying PLGA Mw, excipient concentration, and drug loading were studied. Additionally, solubility studies were conducted to determine the critical water concentration required for phase inversion. Results demonstrated that PLGA Mw was the most significant factor in modulating low Mw drug release from the ISFI systems. ISFI formulations comprised of a low Mw (16 kDa) PLGA showed a significantly (p < 0.05) lower burst release (after 24 h), 28.2 ± 0.5%, compared with higher Mw PLGA (60 kDa), 55.1 ± 3.1%. Critical water concentration studies also demonstrated that formulations with lower Mw PLGA had increased solubility in water and may thus require more time to phase invert and release the drug. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here