Premium
Porous hollow membrane sheet for tissue engineering applications
Author(s) -
Hadjizadeh Afra,
MohebbiKalhori Davod
Publication year - 2009
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.32608
Subject(s) - materials science , tissue engineering , coating , scaffold , biomedical engineering , fabrication , capillary action , polymer , porosity , nanotechnology , scanning electron microscope , composite material , medicine , alternative medicine , pathology
In spite of the present advances in the scaffolds fabrication and bioreactor systems, the ability to create functional thick tissue masses in vitro is still a great tissue engineering challenge. To overcome this problem, the fabrication of a capillary bed, for nutrient supply to and waste product removal from the tissue engineering construct as it grows, is essential. However, the technical construction of a capillary‐like architecture is complex and challenging. This study reports, for the very first time, a simple method to design and fabricate a porous hollow membrane sheet (PHMsh) to provide both a capillary bed and a scaffold to support tissue growth. The PHMsh composed of a flexible porous sheet involving parallel porous channels and can be used as flat‐, rolled‐, or sandwiched‐shape scaffold. The PHMsh was fabricated from poly(ϵ‐caprolactone) polymer solution using solvent casting methods (i.e., immersion precipitation and air casting). Optical microscopy and scanning electron microscopy were used for the morphological analyses. The PHMsh was surface treated using n ‐hepthylamine plasma polymer (HApp) and X‐ray photoelectron spectroscopy confirmed successful surface coating. Human umbilical vein endothelial cells (HUVECs) and fibroblast cells were used to evaluate the capability of PHMsh toward cell adhesion. The HApp coating enhanced both HUVEC and fibroblast cells adhesion. The obtained preliminary results demonstrated the successful fabrication of the PHMsh, with potential application for tissue engineering scaffolds, particularly in large tissue mass generation under perfusion systems in vitro, which is our future research direction. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res, 2010