z-logo
Premium
In vitro response of monocyte‐derived macrophages to a decellularized pericardial biomaterial
Author(s) -
Ariganello Marianne B.,
Labow Rosalind S.,
Lee J. Michael
Publication year - 2010
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.32554
Subject(s) - decellularization , materials science , foreign body giant cell , extracellular matrix , microbiology and biotechnology , biomaterial , biomedical engineering , in vitro , tissue engineering , biophysics , nanotechnology , biology , biochemistry , pathology , medicine
Decellularized tissue‐derived heart valves are an example of biomaterials derived from natural scaffolds. These types of implants are increasing in popularity although their in vivo performance is still only poorly understood and has, at times, been catastrophic. It is apparent that better understanding is required before these biomaterials can be used safely. In this study, the human monocyte‐derived macrophage (MDM) response to decellularized bovine pericardium (DBP) was used as a model to predict the biological performance of these materials on implantation. Human monocytes differentiated on tissue culture polystyrene (TCPS) for 14 days were trypsinized and reseeded onto DBP, TCPS, and polydimethylsiloxane (PDMS) for 48 h. The MDMs on DBP contained less intracellular and extracellular esterase activity compared with MDMs on TCPS and PDMS, as well as less acid phosphatase activity than on TCPS. As well, morphologically, MDMs on DBP were less spread, less multinucleated and did not display many lamellipodia. Taken together, these data represent the first evidence of the MDM response to intact, native extracellular matrix, demonstrating that these cells reacted with an altered, possibly reduced foreign body response on this natural scaffold compared with the two control surfaces. This in vitro MDM cell model may provide a novel method for predicting and elucidating the biological performance of tissue‐derived biomaterials, thereby directing a more rational design of biomaterials for tissue regeneration purposes. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res 2010

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here