z-logo
Premium
Surface‐dependent modulation of proliferation, bone matrix molecules, and inflammatory factors in human osteoblasts
Author(s) -
Tonnarelli Beatrice,
Manferdini Cristina,
Piacentini Anna,
Codeluppi Katia,
Zini Nicoletta,
Ghisu Sonia,
Facchini Andrea,
Lisignoli Gina
Publication year - 2008
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.32019
Subject(s) - osteoblast , osteopontin , materials science , microbiology and biotechnology , extracellular matrix , osteocalcin , bone cell , alkaline phosphatase , chemistry , biology , immunology , biochemistry , in vitro , enzyme
Surface properties affect the biological properties of cells modulating the expression of different factors. Osteoblasts contribute both to new bone formation and controlling haematopoiesis through cytokines and growth factors. We analyzed the effect of bone (calcium‐phosphate bone slides), cartilaginous (hyaluronan‐based scaffold), and plastic substrate culture on human osteoblast proliferation, bone matrix molecule, and inflammatory factor expression. Osteoblast proliferation increased to a greater extent when the cells were grown for 14 days on plastic and bone slides, whereas hyaluronan‐based scaffold (HA‐scaffold) induced only a minimal increase. Collagen type I, osteonectin, alkaline phosphatase and osteocalcin were expressed on osteoblasts grown on plastic and bone slides and down‐modulated at mRNA and protein level by HA‐scaffold. Bone slides showed the ability to increase osteopontin mRNA expression. The expression of CXCR4 and CXCL13 was upregulated by bone slides and HA‐scaffold, while CXCL12 and CXCR5 expression was down‐modulated. These data suggest a substrate‐dependent modulation of human osteoblast proliferation, bone matrix and inflammatory factor expression, which might help to understand the active role played by osteoblasts in bone microenvironment by coupling bone extracellular matrix, chemokines and the haematopoietic system. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2009

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here