z-logo
Premium
Scaffold permeability as a means to determine fiber diameter and pore size of electrospun fibrinogen
Author(s) -
Sell Scott,
Barnes Catherine,
Simpson David,
Bowlin Gary
Publication year - 2008
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.31556
Subject(s) - materials science , permeability (electromagnetism) , scaffold , biomedical engineering , scanning electron microscope , electrospinning , composite material , fiber , nanofiber , polymer , membrane , chemistry , medicine , biochemistry
Abstract The purpose of this study was to construct a flowmeter that could accurately measure the hydraulic permeability of electrospun fibrinogen scaffolds, providing insight into the transport properties of electrospun scaffolds while making the measurement of their topographical features (fiber diameter and pore size) more accurate. Three different concentrations of fibrinogen were used (100, 120, and 150 mg/mL) to create scaffolds with three different fiber diameters and pore sizes. The fiber diameters and pore sizes of the electrospun scaffolds were first analyzed with scanning electron microscopy and image analysis software. The permeability of each scaffold was measured with the flowmeter and used to calculate permeability‐based fiber diameters and pore sizes, which were compared to values obtained through image analysis. Permeability measurement revealed scaffold permeability to increase with fibrinogen concentration, much like average fiber diameter and pore size. Comparison between the two measurement methods demonstrated the efficacy of the flowmeter as a way to measure scaffold features. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res 2008

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here