z-logo
Premium
Influences of mechanical properties and permeability on chitosan nano/microfiber mesh tubes as a scaffold for nerve regeneration
Author(s) -
Wang Wei,
Itoh Soichiro,
Matsuda Atsushi,
Ichinose Shizuko,
Shinomiya Kenichi,
Hata Yuiro,
Tanaka Junzo
Publication year - 2008
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.31536
Subject(s) - microfiber , materials science , scaffold , chitosan , regeneration (biology) , permeability (electromagnetism) , composite material , nano , biomedical engineering , chemical engineering , membrane , engineering , microbiology and biotechnology , biology , genetics
We have developed chitosan nonwoven micro/nanofiber mesh tubes and examined the effects of their mechanical strength and permeability on nerve regeneration. Chitosan nano/microfibrous tubes with a deacetylation rate (DAc) of 78% or 93% were prepared by electrospinning. A chitosan film tube with a DAc of 93% was also fabricated and combined with the nano/microfibrous tubes to form bilayered tubes with a nano/microfiber mesh inner structure and a film outer layer. Nano/microfiber mesh tubes with a DAc of 78% or 93%, bilayered tubes with a nano/microfiber mesh inner structure with a DAc of 78% or 93% and a film outer layer with a DAc of 93%, and film tubes with a DAc of 93% were each tested as bridge grafts into injured rat sciatic nerve. Isografting was performed as a control. Although the functional recovery of motor activity was delayed in each group, sensory function reemerged first in the isograft group followed by the group receiving nano/microfiber mesh tubes with a DAc of 93%. Histological analysis was consistent with these results. The chitosan nano/microfiber mesh tubes with a DAc of 93% have sufficient mechanical properties to preserve tube space, provide a better scaffold for cell migration and attachment, and facilitate humoral permeation to enhance nerve regeneration. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2008

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom