z-logo
Premium
Oxidized NiTi surfaces enhance differentiation of osteoblast‐like cells
Author(s) -
Michiardi A.,
Engel E.,
Aparicio C.,
Planell J. A.,
Gil F. J.
Publication year - 2008
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.31486
Subject(s) - osteoblast , materials science , adhesion , ascorbic acid , alkaline phosphatase , osteocalcin , in vitro , cell adhesion , nickel titanium , biophysics , biochemistry , metallurgy , composite material , chemistry , biology , enzyme , shape memory alloy , food science
A new oxidation treatment (OT) on NiTi shape memory alloys was developed in a previous work. This OT treatment significantly decreases Ni ion release into the exterior medium, and therefore is thought to be beneficial for NiTi cytocompatibility. As to confirm this expectation, the in vitro response of MG63 osteoblast‐like cells cultured on untreated and oxidized NiTi surfaces was studied. An adhesion test at 1, 4, and 8 h of incubation was performed. Statistical differences were evidenced at 1 h of adhesion depending on the surface treatment and chemical composition of the substrate. However, at larger times of study, there were no statistically significant differences between untreated and oxidized surfaces. The proliferation test (until 9 days) showed that untreated and oxidized NiTi surfaces are not cytotoxic for MG63 cells. The differences of adhesion at short times did not affect the proliferation of MG63 cells. However, after 48 h of stimulation with ascorbic acid and dexamethasone, the MG63 cells cultured on oxidized surfaces showed higher alkaline phosphatase activity and osteocalcin levels. The improvement of osteoblast differentiation due to OT treatment could accelerate bone formation, and, therefore, could allow earlier loading of NiTi devices used in dental and orthopedic applications. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2008

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here