z-logo
Premium
Macroporous condensed poly(tetra fluoro‐ethylene). II. In vivo effect on adhesion formation and tissue integration
Author(s) -
Voskerician Gabriela,
Rodriguez Analiz,
Gingras Peter H.
Publication year - 2007
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.31155
Subject(s) - materials science , adhesion , polygon mesh , polypropylene , copolymer , polymer , biomedical engineering , in vivo , chemical engineering , polymer chemistry , composite material , geometry , medicine , mathematics , microbiology and biotechnology , engineering , biology
This study investigated the in vivo correlation between construct parameters (surface area, pore size) and polymer chemistry in modulating mesh‐intestinal adhesions and mesh‐abdominal wall integration of condensed poly(tetra fluoro‐ethylene) (cPTFE) in hernia repair. A defect created by excising a 2 cm circular section of the abdominal wall from a rat was repaired with cPTFE or either one of the following synthetic meshes: expanded PTFE (ePTFE), ePTFE + polypropylene (PP), PP or PP + oxidized regenerated cellulose (ORC). The intestinal adhesion and abdominal wall integration were studied quantitatively by measuring the pull‐out force required to separate each mesh from the respective tissue at 1 and 3 months postimplantation. The hydrophobic, large pore meshes, such as cPTFE and ePTFE + PP led to reduced adhesions. Further, the presence of ORC contributed to reduction in adhesions of the more hydrophilic PP + ORC mesh. The large pore size, thinner meshes such as cPTFE and PP + ORC led to better tissue integration compared to the other meshes tested. Through hydrophobic chemistry, low profile, and increased pore size, cPTFE balances the rapid resolution of the inflammatory and wound healing response that resists adhesion formation, with efficient integration within the surrounding abdominal tissue. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2007

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here