z-logo
Premium
Relationship of solvent to the photopolymerization process, properties, and structure in model dentin adhesives
Author(s) -
Ye Qiang,
Spencer Paulette,
Wang Yong,
Misra Anil
Publication year - 2007
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.30890
Subject(s) - materials science , adhesive , composite material , glass transition , dentin , photopolymer , polymer , differential scanning calorimetry , monomer , curing (chemistry) , bond strength , dynamic mechanical analysis , ultimate tensile strength , solvent , organic chemistry , thermodynamics , chemistry , physics , layer (electronics)
The ratio of the double‐bond content of monomer to polymer, i.e. degree of conversion (DC) has been used frequently as a convenient means of comparing the behavior and properties of dental composites and adhesives. The purpose of this investigation was to study the relationship of photopolymerization processes, bulk properties, and structure using model dentin adhesives cured in the presence of different ethanol content as an example. There was little difference in the DC of model BisGMA‐based adhesives cured in the presence of ethanol concentrations ranging from 0 to 40 wt %, but there were substantial differences in the mechanical properties. Ultimate tensile strength (UTS) and modulus of elasticity decreased with an increase in ethanol content. Polymer structure was revealed by thermal behavior in the glass transition temperature ( T g ) region; these measurements were obtained by modulated temperature differential scanning calorimetry (MTDSC) technology, which removes the competing irreversible effects associated with release of volatiles and residual curing. Glass transition temperature of model adhesives decreased substantially with an increase in ethanol content. The DC based on the quantity of remaining double bond has been used extensively to characterize and provide a relative assessment of the quality of dentin adhesives and dental composites. Since polymers differing in linearity, and therefore crosslink density, may have a similar degree of conversion, the measurement of monomer/polymer conversion does not necessarily provide complete representation of the quality or durability of the polymer structure. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2007

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here