Premium
Local delivery of bisphosphonate from coated orthopedic implants increases implants mechanical stability in osteoporotic rats
Author(s) -
Peter Bastian,
Gauthier Olivier,
Laïb Samia,
Bujoli Bruno,
Guicheux Jérôme,
Janvier Pascal,
van Lenthe G. Harry,
Müller Ralph,
Zambelli PierreYves,
Bouler JeanMichel,
Pioletti Dominique P.
Publication year - 2006
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.30456
Subject(s) - implant , orthopedic surgery , osteoporosis , bisphosphonate , dentistry , medicine , osseointegration , materials science , surgery
Abstract Patients with osteoporosis and joint disabilities represent a constant growing and challenging population to be treated in the musculoskeletal clinical field. Especially in the case of total hip arthroplasty, new solutions should be developed to compensate for the double negative factors, peri‐implant osteolysis, and osteoporotic bone loss, affecting the quality of implant outcome. The goal of this study was then to establish a proof of concept for orthopedic implant used as Zoledronate delivery in osteoporotic rats, and in particular, to verify if this approach could increase the initial implant stability. Twenty‐five female 6‐month‐old Wistar rats were ovariectomized 6 weeks before the implantation to induce osteoporosis. The animals were randomly separated in five groups representing the different Zoledronate concentrations in the HA coating: 0, 0.2, 2.1, 8.5, and 16 μg/implant. Histomorphometric measures and peri‐implant bone volume fraction were assessed and mechanical stability tests were performed. Bone volume fraction and biomechanical results clearly illustrate the positive effect of Zoledronate coated implants in the osteoporotic rats. A remarkable result was to show the existence of a window of Zoledronate content (0.2 to 8.5 μg/implant) in which the mechanical fixation of the implant increased. We were able to establish the proof of concept for orthopedic implants used as a drug delivery system in osteoporotic rats. The local bisphosphonate delivery from a calcium phosphate coating allowed increase of the mechanical fixation of an orthopedic implant. This study shows that orthopedic implants containing bisphosphonates could be beneficial for osteoporotic patients in need of a total joint replacement. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2006