z-logo
Premium
Bioresorbable composites prepared by supercritical fluid foaming
Author(s) -
Mathieu L. M.,
Montjovent M.O.,
Bourban PE.,
Pioletti D. P.,
Månson J.A. E.
Publication year - 2005
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.30385
Subject(s) - materials science , composite number , composite material , supercritical fluid , biocompatible material , tissue engineering , ceramic , porosity , biomedical engineering , medicine , chemistry , organic chemistry
Bone is a natural composite construct, with a gradient structure going from a loose interconnected cellular core to an outer dense wall, thus minimizing bone weight while keeping a high mechanical resistance. Due to this unique and complex structure, bone defects are difficult to replace or repair. Tissue engineering aims at providing artificial bone grafts. Several techniques have been proposed to produce porous structures or scaffolds, but, as yet, with no optimal solutions. This article focuses on bioresorbable ceramic–polymer composite foams obtained by supercritical fluid foaming. This flexible technique enables an adequate morphology and suitable properties for bone tissue engineering to be obtained. Composite scaffolds are biocompatible, allowing cell proliferation and differentiation. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2005

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here