Premium
A study of biologically active peptide sequences (P‐15) on the surface of an ABM scaffold (PepGen P‐15™) using AFM and FTIR
Author(s) -
Hole Bhushan B.,
Schwarz James A.,
Gilbert Jeremy L.,
Atkinson Brent L.
Publication year - 2005
Publication title -
journal of biomedical materials research part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.849
H-Index - 150
eISSN - 1552-4965
pISSN - 1549-3296
DOI - 10.1002/jbm.a.30331
Subject(s) - materials science , fourier transform infrared spectroscopy , scaffold , atomic force microscopy , peptide , nanotechnology , biomedical engineering , chemical engineering , nuclear magnetic resonance , engineering , medicine , physics
Cellular response to any biomaterial surface is governed by a number of factors including topography, surface chemistry, surface charge, structural heterogeneity, and physiological conditions. Understanding these factors at the nanoscale level is crucial to develop improved biomaterials. Any changes in these properties due to surface modifications need to be addressed properly, as they could have significant impact on the cellular interaction with biomaterials. In this study, the topography and surface chemistry of commercially available tissue engineered xenograft, PepGen P‐15™ [comprised of a synthetic peptide P‐15 irreversibly attached to anorganic bovine bone mineral (OsteoGraf/‐N®)] was studied using Atomic Force Microscopy (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). FTIR confirmed the presence of the peptide on the surface of PepGen P‐15™. Changes in the peptide conformation, which includes a decrease in the β‐strand accompanied by an increase in unordered structures/random coil structures after attachment on OsteoGraf/‐N® is observed. Specific functional groups, which are involved in the binding mechanism, are identified. The results suggest that the attachment of the peptide on OsteoGraf/‐N® occurs via a specific surface docking ionic interaction involving the C‐terminal carboxylic group on the peptide with positive domains generated by hydroxyl vacancies on the apatite surface. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2005