z-logo
Premium
Speckle contrast diffuse correlation tomography of cerebral blood flow in perinatal disease model of neonatal piglets
Author(s) -
Huang Chong,
Mazdeyasna Siavash,
Mohtasebi Mehrana,
Saatman Kathryn E.,
Cheng Qiang,
Yu Guoqiang,
Chen Lei
Publication year - 2021
Publication title -
journal of biophotonics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.877
H-Index - 66
eISSN - 1864-0648
pISSN - 1864-063X
DOI - 10.1002/jbio.202000366
Subject(s) - cerebral blood flow , medicine , perinatal asphyxia , skull , ischemia , scalp , blood flow , asphyxia , pathology , cardiology , anesthesia , anatomy
We adapted and tested an innovative noncontact speckle contrast diffuse correlation tomography (scDCT) system for 3D imaging of cerebral blood flow (CBF) variations in perinatal disease models utilizing neonatal piglets, which closely resemble human neonates. CBF variations were concurrently measured by the scDCT and an established diffuse correlation spectroscopy (DCS) during global ischemia, intraventricular hemorrhage, and asphyxia; significant correlations were observed. Moreover, CBF variations associated reasonably with vital pathophysiological changes. In contrast to DCS measurements of mixed signals from local scalp, skull and brain, scDCT generates 3D images of CBF distributions at prescribed depths within the head, thus enabling specific determination of regional cerebral ischemia. With further optimization and validation in animals and human neonates, scDCT has the potential to be a noninvasive imaging tool for both basic neuroscience research in laboratories and clinical applications in neonatal intensive care units.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here