Premium
Multispectral near infrared absorption imaging for histology of skin cancer
Author(s) -
Spreinat Alexander,
Selvaggio Gabriele,
Erpenbeck Luise,
Kruss Sebastian
Publication year - 2020
Publication title -
journal of biophotonics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.877
H-Index - 66
eISSN - 1864-0648
pISSN - 1864-063X
DOI - 10.1002/jbio.201960080
Subject(s) - multispectral image , near infrared spectroscopy , basal cell carcinoma , materials science , hyperspectral imaging , spectral imaging , absorption (acoustics) , imaging spectroscopy , biomedical engineering , optics , pathology , basal cell , medicine , computer science , physics , artificial intelligence , composite material
Multispectral imaging combines the spectral resolution of spectroscopy with the spatial resolution of imaging and is therefore very useful for biomedical applications. Currently, histological diagnostics use mainly stainings with standard dyes (eg, hematoxylin + eosin) to identify tumors. This method is not applicable in vivo and provides low amounts of chemical information. Biomolecules absorb near infrared light (NIR, 800‐1700 nm) at different wavelengths, which could be used to fingerprint tissue. Here, we built a NIR multispectral absorption imaging setup to study skin tissue samples. NIR light (900‐1500 nm) was used for homogenous wide‐field transmission illumination and detected by a cooled InGaAs camera. In this setup, images I( x , y , λ ) from dermatological samples (melanoma, nodular basal‐cell carcinoma, squamous‐cell carcinoma) were acquired to distinguish healthy from diseased tissue regions. In summary, we show the potential of multispectral NIR imaging for cancer diagnostics.