z-logo
Premium
Optimal stimulation frequency for vibrational optical coherence elastography
Author(s) -
Zhang Duo,
Wang Jinjiang,
Li Chunhui,
Huang Zhihong
Publication year - 2020
Publication title -
journal of biophotonics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.877
H-Index - 66
eISSN - 1864-0648
pISSN - 1864-063X
DOI - 10.1002/jbio.201960066
Subject(s) - coherence (philosophical gambling strategy) , vibration , acoustics , linearity , imaging phantom , elastography , range (aeronautics) , finite element method , materials science , estimator , stiffness , physics , optics , mathematics , structural engineering , statistics , ultrasound , engineering , quantum mechanics , composite material
Vibrational optical coherence elastography (OCE) is a promising tool for extracting the mechanical property of soft tissue. Purpose of this study is focusing on settling the optimal frequency range for vibrational OCE with evenly distributed stress filed. A finite element model of 2% agar phantom was built by ANSYS with a vibration stimulation frequency range from 200 to 3000 Hz. Practical experiments were carried out for cross‐validation with the same frequencies and sample. Lateral and horizontal stress filed distributions under different frequencies were mathematically evaluated by coefficient of variance and degree of linearity. Results from simulation and practical experiment cross‐validated each other and 1000 Hz was set as the maximum ideal frequency for vibrational OCE, while the minimum frequency is set by theoretical calculation with a result of 250 Hz. An ex vivo biological sample was utilised to testify performance of vibrational OCE with excitation frequencies in and out of concluded optimal range, which showed that stiffness was better mapped out in optimal frequency range.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here