z-logo
Premium
Analysis of relation between skin elasticity and the entropy of skin image using near‐infrared and visible light sources
Author(s) -
Jung Geunho,
Lee Min Young,
Kim Sungchul,
Lee JeeBum,
Kim Jae G.
Publication year - 2020
Publication title -
journal of biophotonics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.877
H-Index - 66
eISSN - 1864-0648
pISSN - 1864-063X
DOI - 10.1002/jbio.201900213
Subject(s) - elasticity (physics) , randomness , entropy (arrow of time) , optics , materials science , mathematics , physics , statistics , composite material , quantum mechanics
Skin elasticity has been regarded as one of the main indicators of skin condition. Current measurement devices for skin elasticity are mostly expensive for home‐use and should contact the skin surface. As a first step to develop improved methods, we focus on the relation between skin elasticity and the entropy of skin images. Reduced skin elasticity causes wrinkles. It spreads frequency components and increases their randomness in the frequency domain. The randomness is quantified as entropy, which is a measure of the disorder of a system in physics. Therefore, skin elasticity is expected to have a negative relation with entropy. This tendency can be improved by applying penetration depth characteristics according to the wavelength of light. From cheeks and forehead of 12 Korean adults, skin images are acquired with three different light sources (470 nm, 870 nm and broadband light) and skin elasticity is measured. The root mean square error between the measured data and the fitted model is “0.27” (870 nm), “0.49” (broadband light) and “1.42” (470 nm). Furthermore, the results are analyzed by classifying by sex, age and measurement area. This study demonstrates the possibility of developing noncontact home‐use devices to measure skin elasticity in the future.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here