Premium
Inhibition of cortical neural networks using infrared laser
Author(s) -
Xia Qingling,
Nyberg Tobias
Publication year - 2019
Publication title -
journal of biophotonics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.877
H-Index - 66
eISSN - 1864-0648
pISSN - 1864-063X
DOI - 10.1002/jbio.201800403
Subject(s) - laser , cortex (anatomy) , irradiation , neural activity , biological neural network , premovement neuronal activity , pipette , in vitro , brain cortex , biophysics , chemistry , materials science , electrode , biomedical engineering , neuroscience , biology , biochemistry , optics , medicine , endocrinology , physics , nuclear physics
The aim of the present study is to optimize parameters for inhibiting neuronal activity safely and investigating thermal inhibition of rat cortex neural networks in vitro by continuous infrared (IR) laser. Rat cortex neurons were cultured on multi‐electrode arrays until neural networks were formed with spontaneous neural activity. Neurons were then irradiated to inhibit the activity of the networks using different powers of 1550 nm IR laser light. A finite element heating model, calibrated by the open glass pipette method, was used to calculate temperature increases at different laser irradiation intensities. A damage signal ratio (DSR) was evaluated to avoid excessive heating that may damage cells. The DSR predicted that cortex neurons should be safe at temperatures up to 49.6°C for 30 seconds, but experiments suggested that cortex neurons should not be exposed to temperatures over 46°C for 30 seconds. Neural response experiments showed that the inhibition of neural activity is temperature dependent. The normal neural activity could be inhibited safely with an inhibition degree up to 80% and induced epileptiform activity could be suppressed. These results show that continuous IR laser radiations provide a possible way to safely inhibit the neural network activity.